UFEZ 대중소 상생 투자 플랫폼 공모전 개최 공고

울산경제자유구역청과 울산창조경제혁신센터는 수소저탄소에너지, 미래모빌리티, 미래호학신소재 분야의 핵심기술을 보유한 국내 (예비)창업자 및 벤처중소기업을 발굴하여 울산 이전 및 사업화를 지원하고 대기업 및 공공기관과의 수요 매칭 프로그램을통해 역량 있는 전문기업으로 육성하고자「UFEZ 대중소 상생 투자 플랫폼」공모전을개최하오니, 많은 참여 바랍니다.

2022년 5월 16일 **울산창조경제혁신센터장**

1

사업개요

□ 사업목적

- 울산경제자유구역 핵심전략산업 육성을 위해 수소저탄소에너지, 미래모빌리티, 미래 화학신소재 분야 대기업의 수요기술과 신기술을 보유한 유망기업을 발굴하고 유치
- 선발된 (예비)창업자 및 벤처·중소기업 등에게 울산 이전 및 사업화를 지원하고 대기업 및 공공기관과의 수요매칭프로그램을 통해 역량 있는 전문기업으로 육성

□ 운영주체

- (주최/주관) 울산경제자유구역청/울산창조경제혁신센터
- (**파트너社)** 현대자동차, 현대모비스, 현대오일뱅크, 효성중공업, 롯데케미칼, 삼성SDI, SK가스, S-OIL, 한국동서발전
- **(협력기관)** 기술보증기금, 대한무역투자진흥공사, 중소벤처기업진흥공단, 한국에너지기술연구원

2 선정개요

- □ 선정규모 : 5개 팀 내외
- □ **모집분야** : 수소·저탄소에너지, 미래모빌리티, 미래화학신소재
 - ① 모집분야 관련 신기술을 보유한 유망기업[붙임1 참조]
 - ② 대기업이 요청한 기술 수요에 부합하는 유망기업[붙임2 참조]
- □ 신청대상 : 국내 (예비)창업자^①, 벤처·중소기업^② 등^③ 누구나
 - ① (예비창업자) 사업 공고일 기준 사업자등록 및 법인등록을 하지 않은 자(팀)
 - ② (벤처·중소기업)「벤처기업육성에 관한 특별조치법」제2조의2에 따른 벤처기업 및「중소기업기본법」제2조에 따른 중소기업
 - ③ 울산 지역 대기업과 사업 협력 희망기업

□ 선정과정

○ 평가위원회를 구성하여 서류평가, 기술 검증 및 발표평가로 구분하여 단계별 실시

서류평가	요건검토		기술검증		발표평가
선발규모의 2배수 내외	지격 관련 위배사항 발견 시 기술검증 및 선정 발표평가 대상 제	_ ► <u>!</u>	울산 산업과의 연관성 기술 우수성 및 사업성 등 검증	>	서류평가 통과 기업 대상

- ① (서류평가) 선발규모의 2배수 내외를 발표평가 대상자로 선발
 - * 신청서류 서면평가(100%)
- ② (요건검토) 신청자격 확인서류를 제출받아 검토할 예정이며 자격 관련 위배사항 발견 시 기술검증 및 선정 발표평가 대상에서 제외
- ③ (기술검증) 울산 산업과의 연관성, 기술 우수성 및 사업성 등을 검증하여 발표평가에 점수 반영
 - * 기술보증기금 및 외부전문가들이 현장평가
- ④ **(발표평가)** 서류평가 통과자를 대상으로 평가위원회를 구성하여 발표 및 질의응답 중심의 평가
- 기술검증(30%)+발표평가(70%) → 지원기업 선정
- 협력기관(울산경자청 기보, KOTRA, 중진공, KIER)의 추천기업은 서류평가 시 기점 부여(2점)

□ 선발 일정

선정 과정	일 정	비고
모집공고 및 서류 접수	2022.05.16.(월) ~ 07.01(금), ~18:00 까지	신청 서류 접수 (https://ustar.or.kr)
 수요기술 설명회	2022.06.09.(목) 14:00	온라인 사전접수 (https://forms.gle/6CdYYCtE8A69L8gN6)
서류평가 및 합격자 발표	2022.07.07(목)	센터 홈페이지 공지 (https://ccei.creativekorea.or.kr/ulsan/)
요건검토	2022.07.12.(화)	선정 제외 대상 참고
기술검증	2022.07.18.(월) ~ 08.12.(금)	울산 산업과의 연관성 기술 우수성 및 사업성 등을 검증하여 발표평기에 점수 반영
발표 평가	2022.08.18.(목) 예정	창업아이템 및 사업계획 발표
초종 선정기업 발표	2022.08.25.(목) 예정	센터 홈페이지 공지 (https://ccei.creativekorea.or.kr/ulsan/)
킥 오프(Kick off)	2022.09.中	시상식 및 시상기업 기술소개

□ 선정 제외 대상

- <u>울산센터 2021년 「K-H2 신기술 Grand Challenge 1기 공모전」 수혜기업(시상금</u> 수령)은 참여가 제한됨
- 신청서. 사업계획서 등 본 사업 관련 서류를 허위로 기재한 경우
- 정부 부처 및 지방자치단체. 기관 사업에 참여 제한으로 제재중인 자(기업)
- 타인의 아이디어·기술 등을 모방하거나 특허, 실용신안 등 지식재산권을 침해 또 는 침해할 우려가 있는 경우
- 「중소기업창업 지원법 시행령」제4조에 따라 창업에서 제외되는 업종과 사행성 및 환경오염 유발 등 반 사회적 성격의 창업아이템
- 금융기관 등으로부터 채무불이행으로 규제 중인 자(기업)
 - * 단, 신청·접수 마감일('22.07.01.)까지 채무변제 완료 후 증빙이 가능한 자(기업), 신용회복위원회의 프리워크아웃, 개인워크아웃 제도에서 채무조정합의서를 체결한 경우, 법원의 개인회생제도에서 변제계획인가를 받거나 파산면책 선고자, 회생인가를 받은 기업, 중소기업진흥공단 등으로부터 재창업자금을 지원받은 자(기업) 등 정부·공공기관으로부터 재기지원 필요성을 인정받은 자(기업)는 신청(지원) 가능
- 국세 또는 지방세 체납으로 규제 중인 자(기업)
- * 단, 세금분납계획에 따른 성실납부자(체납처분유예신청), 신청·접수 마감일 ('22.07.01.)까지 국세, 지방세 등의 특수채무 변제 후 증빙이 가능한 자, 중소벤처기업진흥공단 등으로부터 재창업자금을 지원 받은 자 등 정부·공공기관으로부터 재기지원 필요성을 인정받은 자(기업)는 신청(지원) 가능
- 신청일 현재 휴업 중인 자(기업) 또는 관련 법령상의 창업이 불가능한 자

주요 지원 사항

□ 선정 기업 지원 내용

○ 시상금 : 시제품 제작·고도화 자재 구입 마케팅 전시회 참가비용 등 사업회에 활용

상격	상금	시상팀	총 상금
대상	20,000천원	1개 팀	20,000천원
최우수상	10,000천원	2개 팀	20,000천원
우수상	5,000천원	2개 팀	10,000천원
	합계	5개 팀	50,000천원

- ※ 심사결과에 따라 부문별 시상 팀 수 및 상금은 변경될 수 있음
- 울산입주지원 : 협약종료일 2개월 이전까지 본사 및 지사 소재지를 울산으로 이전 또는 신규 등록하는 기업에게 지원
 - ※ 협약기간 연장 될 경우 연장시점으로부터 2개월 이전까지 지원

대상	지원금	지원내용
울산이전기업	기업당 최대10,000천원	임대차계약에 의한 건물, 시설, 장비, 물품 등의 임차료 (공급가액에 한함, 부가세 미포함)

- 파트너社와의 기술 컨설팅 및 1:1 멘토링 지원
- 전시회 및 포럼 참여 지원(판로 개척 지원 및 투자 유치 활성화)
- 울산창조경제혁신센터 Seed 투자 및 외부 투자연계 지원(네트워킹, IR 피칭)
- 울산창조경제혁신센터 가족기업 등록
- 협력기관 맞춤형 기업지원 사업 안내 및 연계 지원

4 주요일정 및 프로그램

□ 주요일정

내 용	9월	10월	11월	12월
킥 오프 (Kick off)				
기업육성 프로그램				
파트너 기업 협업				
전시회 및 포럼				
투자 네트워킹 데이				

※ 상기일정은 내부 사정에 의해 변경될 수 있음

□ 지원프로그램

- 수요기술 설명회 개최
- (목 적) 수요기술에 대한 이해와 대기업과의 사업협력 가능성 제시
- (장 소) 온라인(울산창조경제혁신센터 유튜브 U-Story)
- (개최일시) 2022. 06. 09.(목) 14:00
- (참석대상) 수요기술에 관심이 있는 누구나
- (주요내용) 파트너社 수요기술 발표 및 QnA
- (신청기간) 2022. 05. 16.(월) ~ 2022. 05. 31.(화) 18시까지
 - * 설명회 참석 신청이므로 별도로 제출하는 지원서 등의 내용은 없음
- (접수방법) 구글 폼을 통한 온라인 접수 (https://forms.gle/6CdYYCtE8A69L8gN6)
 - * 【붙임 3】 기업별 수요기술설명서
- **킥 오프(Kick off)** : 시상식
- 기업 육성 프로그램
- 기술진단을 통한 분야별 전문가 1:1 컨설팅 및 멘토링
- 기업 수요에 따른 맞춤형 창업 교육
- 파트너社 수요기술 적용 검증
- 전시회 및 포럼 참가 지원
- UFEZ 핵심전략산업* 분야 전시회 참가 지원
 - * 수소·저탄소에너지, 미래모빌리티, 미래화학신소재
 - ※ 전시부스 임차료 일부는 참여기업이 부담
 - ※ 전시일정 및 내용에 따라 지원 범위가 변동될 수 있음
- 투자 네트워킹 데이
- IR 피칭 통한 최종 평가
- 결과에 따른 후속 프로그램 및 투자유치 연계

5 사업 신청 및 접수

□ 신청 접수(서류 접수)

- 공모전 공지 : 울산창조경제혁신센터 홈페이지
- 접수 방법 : U-STAR 홈페이지 통한 온라인 접수 (https://ustar.or.kr)
- * 우편 또는 방문접수 등은 받지 않음
- * 신청접수 마감일은 홈페이지 접속이 증가하니 접수 마감일 2~3일 전 접수권장
- 접수기간 : 2022. 05. 16.(월) ~ 2022. 07. 01.(금), 18:00 까지
- * 울산센터 홈페이지에 공고되어 있는 참가신청서, 사업계획서, 증빙자료 제출
- 제출 서류
- ① 참가신청서【별지 제1호】
- ② 사업계획서【별지 제2호】
- ③ 기타 참고자료【별지 제3호】
- ④ 사업자등록증
- ⑤ 협력기관 추천서【별지 제4호】(해당 시)
- ⑥ 증빙자료【별지 제5호】(서류평가 통과자에 한함)

❖ 서류제출시 유의사항

- ① **참가신청서**는【별지 제1호】서식에 맞춰 작성하여야 하며, 대표자 날인 후 제출
- ② **사업계획서는【**별지 제2호】서식에 맞춰 작성하여야 하며, 임의 양식의 사업계획서 제출 시 선정평가 대상에서 제외
- ③ 기타 참고자료【별지 제3호】는 지식재산권 출원서 및 등록증, 대회수상 내역, 시상금 수혜 내역 등 사업계획서의 기재사항을 입증하기 위해 필요하다고 판단되는 관계서류로 해당자만 제출(증빙서류 별도 첨부)
- ⑤ **협력기관 추천서【**별지 제4호】는 협력기관의 공모 추천서로 해당자 만 제출(추천 기관 자체 추천서 양식이 있을 경우 해당 양식사용 가능)
- ⑥ **기타 참가자격의 증빙을 위한 서류**【별지 제5호】는 서류평가 통과자에 한해 제출 요청 예정
- * 증빙자료가 없는 지식재산권 및 인증 기재 사실은 인정하지 않음

□ 결과 확인

○ 울산창조경제혁신센터 홈페이지: https://ccei.creativekorea.or.kr/ulsan

□ 발표자료 접수(서류전형 합격자에 한함)

○ 접수 방법 : 이메일 접수

※ 이메일 주소는 서류전형 합격자 통지 시 함께 공지 예정임

○ 제출 서류 : 발표자료

※ 파일 형식 : PPT 권장

- ※ 발표 자료 페이지 수에 제한은 없으나, 발표 시간 5분에 맞추어 제작
- ※ 다른 형식으로 제출해도 무방하나, 파일(폰트, 그림, 동영상 등)에 문제가 있을 경우 울산창조 경제혁신센터에서는 책임지지 않음

6 기타사항

□ 유의사항

- 다음 하기의 사유로 발생되는 문제에 대한 책임은 지원자(기업)에 있으며, 울산창조경제혁신센터에서는 선정취소, 상금환수 등의 조치를 취할 수 있음 (선정 이후 기간 포함)
- 저작권이 있는 아이디어, 캐릭터, 프로그램 등의 임의사용
- 수상아이템에 대한 제3자의 저작권 등의 침해로 분쟁 발생시
- 허위, 부정한 방법에 의한 당선사실이 발견될 경우
- 지식재산권을 획득하지 않은 아이디어를 공개하는 경우
- 창업 및 사업화 활동에 불성실하게 임할 경우
- 향후 참가자격 관련 제외기준이 확인될 경우

○ 제출일정 및 접수관련

- 진행일정, 지원 프로그램 등은 기관 사정에 의해 변경 가능
- 제출 마감일 이후에는 지원자(기업)가 작성한 일체의 신청내용 변경 불가
- 필요시 참가자(기업)에 대한 추가 자료를 요청할 수 있으며, 이에 따라 제출 한 자료는 신청서와 동일한 효력을 가짐

- 참가 아이템이 1개 이상의 분야에 해당 될 시, 복수 분야 선택 가능
- 접수된 서류는 반환하지 않으며, 원본서류 일체는 울산창조경제혁신센터에서 서류접수일로부터 3년간 보관
- 서류상의 기재착오나 연락불능으로 인한 불이익은 신청자의 책임임

○ 심사 및 시상관련

- 제출된 사업계획서에 대한 내용은 접수 및 심사과정에서 비밀 유지
- 이미 사업화 되어있는 아이템의 경우, 기존 사업이나 서비스와의 차별성 및 우수성이 증명되어야 서류심사 대상이 됨
- 선정계획의 2배수 미만 접수 시 또는 발표심사 결과 심사위원 만장일치인 경우 선발규모 변동 가능
- 예비창업자로 참가한 경우 참가신청서상 대표자명으로 수상함

7 문의처

	문의	창업본부 오픈이노베이션팀		
울산 창조경제	전화	052-222-9134	E-MAIL	mo5113@ccei.kr
혁신센터	홈페이지	울산창조경제혁신센터 : https://ccei.creativekorea.or.kr/ulsan/		
		U-STAR: https://ust	ar.or.kr/	
울산 문의		투자유치부 투자정책	담당	
경제자유 구역청	전화	052-229-8661~2	E-MAIL	sky6593@korea.kr

붙임 1 UFEZ 대중소 상생 투자 플랫폼 기술 분야

- ◆소: 수소를 에너지원으로 활용하는 자동차, 선박, 열차, 기계 혹은 전기발전 열 생산 등을 늘리고, 이를 위해 수소를 안정적으로 생산-저장-운송하는데 필요한 모든 분야
- ② **저탄소에너지**: 친환경 에너지 생태계 조성을 통한 탄소중립 선도 및 신재생에너지 산업 분야
- ❸ 미래모빌리티: 자동차·조선 등 기존 주력산업과 4차 산업혁명 기술을 연계한 친환경·스마트화 촉진으로 이동 수단(모빌리티) 산업의 참단 핵심기술을 고부가화 한 미래 이동 수단(모빌리티) 분야
- 4 미래화학신소재: 기존 화학소재 산업 인프라를 활용한 첨단 신소 재 기반의 고부가가치 소부장(소재·부품·장비) 개발 분야

붙임 2 수요기술 리스트

no	분야	수요기술	수요기업
1		수소차, 선박, 열차, 드론, 발전 등 수소연료전지 관련 분야	현대자동차
2		농기계 등 수소 연료전지 응용분야	현대자동차
3		수소연료전지 MEA (막전극접합체) 적용 탄소 담지체 기술	현대모비스
4		암모니아 분해를 통한 수소 생산 관련 분야	현대오일뱅크
5		선박 및 건설중장비, 지게차 등 수소연료전지 관련분야	현대오일뱅크
6		액화 수소 생산 및 고속 충전 분야	효성중공업
7		재생 에너지를 활용한 수전해 수소 생산 및 활용 관련 분야	효성중공업
8		이산화탄소 직접수소화를 통한 메탄올 합성 기술	롯데케미칼
9	수소	(수전해) 전극 대면적화 기술	롯데케미칼
10		암모니아 직접 활용 분야 (암모니아 연료전지)	SK가스
11		암모니아 활용 수소 생산 관련 분야 (암모니아 크래킹)	SK가스
12		수소 활용 분야 (수소 히터)	SK가스
13		CCU 분야 (CO2 or syngas to chemical)	SK가스
14		수소 생산 유통 분야 (액화 수소 포함)	S-Oil
15		암모니아 크래킹	S-Oil
16		CCU	S-Oil
17	저탄소에너지	Renewable LNG, LPG	SK가스
18		리튬박 양산기술	롯데케미칼
19	미래모빌리티	전고체 전지분야	삼성SDI
20	마찬학산자	폐플라스틱 재생	SK가스

붙임 3 기업별 수요기술설명서

● 수소

대·중견기업 수요 기술(제품) 설명서		
기업명	현대자동차	
분야	수소	
기술(제품)명	수소연료전지(응용분야 포함)	
필요성 및 기술(제품) 내용	 국내에서는 제9차 전력수급기본계획을 발표하여 신재생에너지 투자 가속화를 위해 연료전지 보급 목표를 확대하겠다고 밝힘 그에 따라 국내 전력 시장에서 수소연료전지의 비중이 커지고 있음 연료전지는 응용 형태에 따라서 모빌리티용 뿐 아니라, 발전용, 수송용 등 여러 분야에 적용이 가능함 	
기술(제품) 동향 및 수준	 각국에서 수소연료전지에 대한 연구와 보급 활성화를 위해 전력을 다하고 있으며, 국내 시장은 이동형 수소 연료전지 부문에서 높은 산업 성숙도를 보이고 있음 	
사업화 가능성	 수소경제 활성화 및 친환경 연료전지에 대한 안정적 물량 공급을 위해 HPS 제도 도입으로 지속적으로 시장이 확대될 것으로 보임 CVC관련 규제 완화에 따라 연료전지, 수소차 등의 수소 활용 분야의 투자로 시장 확대를 기대할 수 있음 	

CH	·중견기업 수요 기술(제품) 설명서
기업명	현대모비스
분야	수소
기술(제품)명	수소연료전지 MEA (막전극접합체) 적용 탄소 담지체 기술
필요성 및 기술(제품) 내용	 ○ 산업통상자원부 "수소경제활성화로드맵"에서 목표하고 있듯이 수소차는 누적 생산량 기준 '40년 620만대, 가정/건물용 연료전지는 '40년까지 2.1 GW (약 94만 가구)을 보급할 예정이고 수소 선박/열차/건설기계 등으로 확대될 예정임 ○ 그에 따라 고분자전해질막 연료전지의 수요는 지속적으로 확대될 예정이고 이에 성능 및 내구성 향상을 위한 핵심 소재인 탄소 담지체 기술은 매우 중요함
기술(제품) 동향 및 수준	 일본의 경우, 탄소 산업 기술 기반으로 다양한 형태의 탄소 기반 담지체들이 적용되고 있음 (예시, 도요타 미라이2 - 구조 제어 담지체 적용) 최근 들어 담지체의 기공 및 표면 특성을 제어할 수 있는 탄소 담지체 기술이 개발되고 있고 적용 기술인 연료전지 MEA의 성능 및 내구성 개선 사례가 발표되고 있음
사업화 가능성	 수소경제 활성화 및 친환경 연료전지에 대한 물량 확대로 지속 적으로 시장이 확대될 것으로 보임 기존 범용 탄소에서 탈피하여 고기능성 탄소를 개발할 경우, 고 부가치 탄소의 시장 확대 가능하고 타 분야인 배터리 음극 소재 로도 확대 적용 가능함.

대	·중견기업 수요기술(제품) 설명서
기업명	현대오일뱅크
분야	수소
기술(제품)명	암모니아 분해를 통한 수소 생산 기술
필요성 및 기술(제품) 내용	 ○ 기존 정유 공정에서는 메탄 등의 수증기 개질 (Methane Steam Reforming) 방법으로 수소를 생산해 왔으나, 해당 방식의 경우현 기술 상황에선 많은 에너지가 필요해 이산화탄소 배출량이높다는 문제가 있음 ○ 상기 방식의 대안으로 이산화탄소 배출을 줄이면서 수소를 생산하는 기술로 암모니아 분해를 통한 수소 생산 기술이 관심받고 있음 ○ 특히, 암모니아의 경우 비교적 쉽게 액화되어 수출입이 용이하며, 분자 내 탄소가 존재하지 않아 효율적으로 수소를 생산할수 있는 촉매 기술 등을 보유할 경우 기존 방식에 비해 상당히많은 양의 이산화탄소 감축 혹은 궁극적으로 그린 수소 생산이가능할 것으로 생각함
기술(제품) 동향 및 수준	 전세계적으로 암모니아 분해를 통한 수소 생산에 관한 연구가 진행되고 있으나, 상용화 현황은 전무한 것으로 보임 암모니아 분해를 위한 촉매는 크게 니켈 및 루테늄 기반으로 나 뉘며, 이에 따라 필요한 반응 온도 범위가 다름 국내 에너지기술연구원, 화학연구원, KIST 등 국가연구소에서 루테늄 기반 촉매를 연구 중이며, 이를 기반으로 롯데정밀화학 등의 기업들이 공동으로 해당 기술 개발에 참여 중임
사업화 가능성	 ○ 전세계적으로 친환경적인 방법을 통한 수소 생산을 위한 원료로 암모니아 생산량 증대 및 이에 따른 공급이 원활해질 경우 이의 수입및 활용에 따른 블루 혹은 그린 수소 생산이 가능해질 것으로 보이며, 정부의 세금 감면, 탄소세 프리미엄 등이 뒷받침될 경우 사업화가능할 것으로 보임 ○ 또한, 해당 방법을 통해 국내 수소 공급이 원활하게 이루어질 시이를 활용한 발전, 선박용 연료로의 활용 등 그 활용처가 매우넓어질 가능성이 존재하므로 사업화가치는 충분하다고 보여짐

CH	·중견기업 수요 기술(제품) 설명서
기업명	현대오일뱅크
분야	수소
기술(제품)명	선박 및 건설중장비, 지게차 등 수소연료전지 관련분야
필요성 및 기술(제품) 내용	 선박 및 건설 중장비, 지게차 등 수소연료전지 소재 관련 분야에 대해 검토를 진행 함. 차량대비 고출력의 연료전지를 제조하기 위해서 강화막 형태의 전해질막이 요구되어지고, 당사의 가동예정인 PTFE 분리막 생산설비를 기반으로 개발 가능함을 확인함. PTFE분리막 생산 설비를 통해 치수안정성이 우수한 전해질막 개발 및 박형화 제품의 개발을 추진함.
기술(제품) 동향 및 수준	 현재 강화막 형태의 전해질막이 차량용으로 제조되어 사업을 진행하고 있으며, 외국계 기업이 독점적 지위를 유지하여 공급 중인 상황임. 외국계 기업의 독점적 공급 구조로 인해 국내 수급이 원활하지 않은점, 향후 수소연료전지 수요 증대시 대응 가능한 업계가 부족한 상황으로 향후 개발 및 국산화가 요구되어짐.
사업화 가능성	 PTFE 생산 설비의 정상 가동을 통해 사업화 가능성이 높은 상황이며, 당사의 전해질막 개발과 더불어 Heavy Duty용 고출력 고내구성 연료전지의 개발이 추진 가능하고 전해질 막까지 사업화 가능성이 높은 상황임. 또한, 전해질막 관련 내부 지식재산권을 확보하여 당사의 기술력을 보유하여 향후 사업화를 확장해 나갈 계획임.

대·중견기업 수요 기술(제품) 설명서			
기업명	효성중공업		
분야	수소		
기술(제품)명	액화 수소 생산 및 고속 충전 분야		
필요성 및 기술(제품) 내용 기술(제품) 동향 및 수준	 ○ 정부는 2050 탄소중립을 위한 실행전략의 일환으로 그린수소를 탄소중립 사회의 핵심연료로 활용하기 위해 액체수소 생산·저장·운송 기술의 경제성 확보를 위한 전략방향을 설정하였음. 액화수소 생산·저장·운송 기술은 대용량의 수소를 안전하게 생산·저장·운송할 수 있는 효율적이고 경제적인 핵심기술임 ○ 수소 경제 규모 증가에 따라 경제적인 학심기술임 ○ 수소 경제 규모 증가에 따라 경제적인 수소 공급을 위해서는 대규모 액체수소 생산·저장·운송 핵심기술 개발이 필요함 (제품: 액화수소생산 플랜트, 액화수소운송 트레일러, 액화수소충전설비) ○ 현재 수소액화플랜트는 글로벌3社(Air Liquide, Linde, Air Product)가기술을 독점하고 있으며 액체수소 관련 기술 확보 및 해외 외화소비를 줄이기 위해서 액체수소 관련 소재·부품·장비 핵심기술 개발및 국산화 추진이 필요함 ○ 수소경제 활성화 로드맵을 통해 '22년까지 수소버스 2천대 보급목표 설정하고 있으며, 수소저장, 공급방식의 다변화를 위해핵심기술 국산화 및 액화수소 운송을 추진 중임 * '23년까지민간차원에서 1일 수십톤의 액화수소 생산설비 구축 진행 중 		
	○ 대용량 액화수소플랜트, 액화수소 운송 트레일러, 액화수소 충전 소의 자체개발 및 상용화 실적은 없음.		
사업화 가능성	 대량의 수소를 안전하게 수소의 생산·저장·운송할 수 있는 효율성과 경제성으로 액화수소 사업의 발전 가능성이 높음 현재 시간당 수소충전량이 높은 수소충전소는 구축이 진행중이나,수소를 공급하는 튜브트레일러의 공간 및 회전반경으로 기존의 버스차고지에는 적용하기 어려운 문제점이 있으므로, 액화수소 저장탱크를 적용한 충전시설이 확대될 것임. 		

대·중견기업 수요 기술(제품) 설명서	
기업명	효성중공업
분야	수소
기술(제품)명	재생 에너지를 활용한 수전해 수소 생산 및 활용 관련 분야
필요성 및 기술(제품) 내용	 주요국은 탈탄소화 정책으로 재생에너지와 수소에너지를 연계하고, 특히 청정수소 활성화를 위한 정책을 수립 중 우리나라도 '2050 장기저탄소발전전략'을 수립하여 유엔에 제출함으로써 2050년 탄소중립 기본방향으로 청정수소 활용 확대 추진 기존 발표한 '수소경제 활성화 및 수소 기술개발 로드맵'에서 2030년이후 수전해 설비, 폐자원 기반 수소생산 기술 상용화와 전과정경제성, 환경성 분석을 통한 친환경 수소경제 확산기를 제시
기술(제품) 동향 및 수준	 ○ 국내에서는 '17년 제주 상명풍력단지에서 250kW급 수전해 기술 개발 및 실증사업을 실시한 것을 시작으로 1MW급(울산), 2MW 급(동해), 3MW급(제주행원) 등의 소규모 수전해 실증사업들이 단계적으로 추진되었음 ○ 유럽, 북미 등 해외 주요국들은 대규모 그린수소 생산계획에 따라 다수의 10MW급 이상의 수전해 실증 프로젝트를 추진 중에 있어, 국내도 대규모 수전해 실증('22~'25년)을 통해 그린수소 생산기반을 확충할 계획임.
사업화 가능성	 국내 재생에너지 발전량 증가에 따라 대규모 재생에너지 단지로부터 전력을 공급받아 그린수소를 생산하고, 전력 공급 피크시 출력 제어량(잉여 전력)을 공급받아 계통 수급 안정화에 기여할 수 있으므로 재생에너지 증가에 따라 확대될 사업임. 수전해 수소 생산기지와 수전해 기반의 수소 출하기지를 새롭게추진할 수 있음.

대·중견기업 수요 기술(제품) 설명서	
기업명	롯데케미칼
분야	친환경, CCUS
기술(제품)명	이산화탄소 직접수소화를 통한 메탄올 합성 기술
필요성 및 기술(제품) 내용	 ○ 현재 국내 이산화탄소 직접 전환 상용 공정은 존재하지 않으며 전세계적으로 이산화탄소 배출 저감 및 활용을 통해 탄소를 리사이클 시킴으로써 유용한 고부가 자원으로 전환하는 CCU 기술이 각광 받음 ○ 현재 국내에서 이산화탄소는 공업용, 음료용, 농업용, 드라이아이스 등의 형태로 소비되고 있으나 화학 원료 또는 연료로 전환할수 있는 효율적인 기술이 개발되면 훨씬 많은 양의 이산화탄소가 활용될수 있음 ○ 가까운 미래에는 재생에너지를 활용해 수소를 생산할 것으로 예상되어 이산화탄소를 전환하는 것에 대한 경제성이 향상될 것으로 판단됨
기술(제품) 동향 및 수준	○ (국내) KIST는 이산화탄소와 수소를 높은 온도에서 반응시키는 역수성가스반응 (reverser water-gas shift reaction)을 통해 합성가스를 제조한 뒤, 이를 메탄올 합성 반응에 이용하는 2 스텝 반응을 개발하였으며, TRL 6 단계의 파일럿 스케일로 운전한 바 있음 (해외) 아이슬란드의 CRI (Carbon Recycling International)는이산화탄소를 직접 수소화 반응을 통해 연간 4000톤 규모의이산화탄소를 생산중이며, 중국 허난성 안양시에 연간 11만톤메탄올을 생산하는 상용 공장을 건설 중에 있음
사업화 가능성	 이산화탄소의 직접 수소화를 통한 메탄올 합성을 위해서는 다음의 연구 개발이 주요할 것으로 판단됨 1) 고효율 촉매 및 반응 기술의 개발 2) 이산화탄소 직접 전환 공정 설계 및 최적화 3) 경제성 평가 및 전 과정 평가

대·중견기업 수요 기술(제품) 설명서	
기업명	롯데케미칼
분야	수소
기술(제품)명	(수전해) 전극 대면적화 기술
필요성 및 기술(제품) 내용	[필요성] ○ 그린수소의 상업적 공급을 위한 대규모 수전해 설비용, 대면적 촉매전극 개발 필요 - 기존 알칼라인 수전해 기반 셀 시스템 대형화 목적 ○ 소형 셀 전극 사용 시, 대용량 수전해 시스템 구축을 위해 단위 셀 개수 증가에 따른 투자비용 증가 문제 [기술내용] ○ 알칼라인 수전해용 대면적 단일 촉매전극 제조기술 개발 - 단일 전극 면적 100 x 100 cm2 이상 (소형전극 (5 x 5 cm2) 전극효율 95% 이상 유지 조건) ○ 전기적 증착법에 의한 귀금속/전이금속 촉매물질의 전극표면 코팅 기술법 사용 - 증착된 촉매 물질의 성분간 비율에 따른 전구체 용액 농도 조절 기술 필요 - 단일 대면적 전극의 비표면적 일정수준 이상 충족(전기적 증착후, 소형전극의 단위면적 당 비표면적 95% 이상 유지 조건) ○ 전극과 분리막 사이 간격 내 이온저항을 최소화 할 수 있는 Zero-gap 구조가 가능한 다공성 구조체 형태 필요 - 전극 표면에 생성된 기체의 배출이 용이한 구조 설계 필요 - 필요 시, 패턴화를 통해 전극표면으로부터 기체 탈착 용이성 확보 필요
기술(제품) 동향 및 수준	 ○ 일반적인 수준에서 단순히 면적만을 증가시켜 시행한 전기적 증착법의 경우, 전체 표면의 비균질성 및 생성기체의 물리적 흡착에 의해 소형전극 대비 성능 저하 문제 및 확장성 한계 ○ 기체 이온 저항을 최소화하기 위한 Zero-gap 형태의 전극 설계기술 개발 및 실증 단계
사업화 가능성	 국내 소규모 수전해 스택의 상용화가 실증단계에서 이루어지고 있고, 해외에는 이미 500 kW급 이상 대규모 설비가 설치되고 있음 수전해를 통한 수소의 수요는 지속적으로 증가할 것으로 전망되며, 다양한 형태의 실증 사례를 통해 기술 개발 및 상용화는 더욱 가속화될 전망

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	수소
기술(제품)명	암모니아 활용 수소 생산 (암모니아 크래킹)
필요성 및 기술(제품) 내용	 수소 사회로 진입하기 위한 수소 운반체로서 암모니아가 주목을 받고 있음. 암모니아는 기존 인프라를 활용할 수 있고, 관련 법안 이 마련되어 있을 뿐만 아니라 에너지 밀도가 높아 활용하기 용 이함. 따라서 암모니아를 수소로 분해할 수 있는 기술이 확보가 된다면 암모니아를 수소 운반체로서의 역할을 충분히 할 것임
기술(제품) 동향 및 수준	○ 국내외 암모니아 크래킹 촉매 개발이 활발히 진행되고 있으나 아직 상용화된 사례는 없음. 가까운 시일 내에 상용화가 될 것 을 기대하고 있으며, 2030년 내 대용량 암모니아 크래킹 공장이 지어질 것이라 기대됨
사업화 가능성	○ 본격적으로 수소 사회에 진입을 하게 되면 수소를 국내 자체 생산하는 양으로는 수급이 부족할 것이기 때문에 해외에서 도입을 해야 할 것임. 해외 수입 수소는 암모니아 형태로 대규모로 진행이 될 것이기 때문에 사업화가 충분히 가능해 보임

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	친환경
기술(제품)명	암모니아 직접 활용 연료전지 (암모니아 직접 연료전지)
필요성 및 기술(제품) 내용	 수소 사회로 진입하기 위한 수소 운반체로서 암모니아가 주목을 받고 있음. 암모니아는 기존 인프라를 활용할 수 있고, 관련 법 안이 마련되어 있을 뿐만 아니라 에너지 밀도가 높아 활용하기 용이함. 그러나 암모니아를 수소로 변환하지 않고 직접 발전에 활용된다면 경제성이 좋아지고 친환경적이므로 개발이 필요함.
기술(제품) 동향 및 수준	○ 암모니아 연료전지는 수소 연료전지보다 개발이 더딘 것으로 알려져 있음. 몇몇 연료전지 선도 업체는 관련 특허를 보유하고 있으나, 사업화 단계는 아니며 대부분 시작단계로 볼 수 있음.
사업화 가능성	○ 본격적으로 수소 사회에 진입을 하게 되면 수소를 국내 자체 생산하는 양으로는 수급이 부족할 것이기 때문에 해외에서 도입을 해야 할 것임. 해외 수입 수소는 암모니아 형태로 대규모로 진행이 될 것이기 때문에 사업화가 충분히 가능해 보임.

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	수소
기술(제품)명	수소 활용 분야 (수소 히터)
필요성 및 기술(제품) 내용	 수소의 활용 분야는 주로 모빌리티, 발전 쪽에 국한되어 논의되고 있음. 그러나 석유화학 업계 입장에선 탄소 중립을 위해 친환경 연료 전환이 필요함. 따라서 온실가스를 배출하지 않는 수소/전기 히터의 개발이 필요함.
기술(제품) 동향 및 수준	 메이저 히터 업체는 90% 이상의 수소 혼소의 히터 버너 제작이 가능한 것으로 알려져 있음. 수소를 연료로 사용하는 경우 환경 적 제약이나 효율 저하 등의 문제가 있을 수 있으나 멀지 않은 시기에 상용화가 될 것이라 기대함.
사업화 가능성	○ 석유화학 업계에 대용량 히터의 연료를 친환경 연료로 전환하지 않으면 온실가스 Net Zero를 달성하기 어려우므로 반드시 필요 한 기술임. 기술력과 경제성만 확보된다면 충분히 사업화 가능 성이 있음.

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	친환경
기술(제품)명	CCU (CO2 or syngas to chemical)
필요성 및 기술(제품) 내용	○ 온실가스를 저감하기 위해 친환경 에너지로의 전환이 필요하지 만 석유화학 분야에서는 필연적으로 원료로 인해 발생하는 온실 가스를 줄이기엔 한계가 있음. 이에 발생하는 온실가스를 포집 하거나 syngas(offgas)를 chemical로 전환하는 기술이 필요함.
기술(제품) 동향 및 수준	○ 많은 CCU 기술이 국내외 소개가 되고 있고 일부 상용화도 진행 되고 있지만, 당사가 적용하기 적합한 기술이 확보되지 않은 실 정임. 또한 대부분의 CCU는 자체 필요 에너지가 커 실질적으로 온실가스를 줄이는데 한계가 많으므로 지속적인 개발이 필요한 과제임.
사업화 가능성	○ 당사가 적용하기 적합한 기술인지만 확인이 되면 10년 내 사업 화는 충분히 가능할 것으로 보임.

대·중견기업 수요 기술(제품) 설명서	
기업명	S-OIL
분야	수소
기술(제품)명	수소 생산 유통 분야 (액화 수소 포함)
필요성 및 기술(제품) 내용	 전 세계적으로 탄소 중립 요구가 커지면서 수소가 새로운 에너지원으로 급부상 수소 수요 증가에 대비해 수소 생산기술 확보가 필요함 또한 기체 상태인 수소는 부피가 커서 운송비가 많이 들어 부피를 줄이기 위해 액체 상태로 만들어야 하는데, 수소는 액화 지점이 영하 252.9℃로 이를 유지하며 운송할 수 있는 기술이 필요
기술(제품) 동향 및 수준	 부생수소 방식이 단가가 가장 저렴하여 국내 수소 주요공급원으로 활용되고 있음 장기적으로 기술 개발을 통해 생산 단가 절감 및 경제성이 확보된 방식의 그린수소 생산이 이뤄져야 함 부생수소를 생산하는 기반은 풍부하나, 재생에너지 연계수전해, 액체 저장·운송 등 생산·공급 방식에 대한 기술 및 표준은 아직 미흡한 상황
사업화 가능성	 국내 기업들은 국가 수소 생산 생태계 활성화 및 경쟁력 확보를 위해 오픈이노베이션 등의 전략적 제휴가 필요함 또한 CVC 연계를 통해 수소산업 전 벨류체인에 대한 투자로 시장 확대를 기대할 수 있음

대·중견기업 수요 기술(제품) 설명서	
기업명	S-OIL
분야	수소
기술(제품)명	암모니아 크래킹
필요성 및 기술(제품) 내용	 수소는 대용량 수송이 어렵다는 문제를 안고 있어, 수소 저장·운 반 방식으로 고압수소, 액화수소, 암모니아 등이 거론되고 있음 암모니아는 기존 인프라를 이용해 운송할 수 있다는 장점이 있어 운반체로서 주목 받음
기술(제품) 동향 및 수준	 국내외에서 암모니아를 분해해 수소를 생산할 수 있는 시스템 개발이 활발히 진행되고 있음 암모니아 분해 촉매시스템을 바탕으로 암모니아 기반 대형 수소 생산 플랜트, 수소 스테이션 등 다양한 공정 개발이 활발하게 이루어 질것이라 기대됨
사업화 가능성	○ 해외 그린 암모니아와 수소를 국내에 도입해 유통하기 위해 니즈가 높은 산업임

대·중견기업 수요 기술(제품) 설명서	
기업명	S-OIL
분야	친환경
기술(제품)명	이산화탄소 포집·활용(CCU)
필요성 및 기술(제품) 내용	 세계 각국은 탄소중립 목표 선언과 함께 탄소 규제를 더욱 강화하고 있으며, 저탄소·친환경 경제구조로 전환을 유도하고 있음 이산화탄소를 유용한 자원으로 재활용하여 부가가치를 실현할 수 있는 CCU 기술 개발이 활발히 진행중 CCU는 배출된 CO2를 산업적인 용도로 직접 활용하기 때문에 일련의 공정이 불필요하여 공정 규모가 크게 줄어드는 장점이 있어, 저장소확보가 어려운 우리나라에서 주목받음
기술(제품) 동향 및 수준	 ○ 유럽연합에서는 탄소중립 시나리오를 통해 '50년 연간 CO2 포집 량을 6억톤 규모로 제시하며, CCU 분야에서 포집된 CO2 50%를 처리하는 것으로 전망하고 있음 ○ 우리나라에는 화력발전 배가스 CO2 포집 기술 실증화 단계에 있고, CO2를 화학, 생물, 광물 등 다양한 자원으로 전환하는 기술이 개발되고 있는 상황 ○ 하지만 상용화까지 불확실성이 높아 민간의 적극적인 기술개발이 어려움
사업화 가능성	○ CO2 포집, 재활용하여 추가 부가가치 창출 기대 ○ CCU 핵심기술 확보를 위해 R&D투자가 활발히 이루어지고 있음

❷ 저탄소에너지

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	저탄소에너지
기술(제품)명	Renewable LNG, LPG
필요성 및 기술(제품) 내용	 온실가스를 줄이고자하는 방향성에 맞춰 탄소 배출이 없는 연료를 사용함이 마땅하나, 당장 모든 분야에 적용하기 어려움이 있으므로 기존 에너지의 탄소 배출을 저감할 수 있는 방안이 필요함. 이에 LNG/LPG를 추출하고 운송/활용하는 과정에서 발생하는 온실가스 배출을 상쇄하는 모델이나 Biofuel 형태로 LNG/LPG를 만드는 기술이 필요함
기술(제품) 동향 및 수준	 RNG, RPG는 이미 상용화된 기술이 있으나 가스전에서 채굴하는 수준만큼 가격 경쟁력이 없거나 규모가 적은 편임. 가스전에서 채굴하는 수준만큼 경쟁력을 확보할 수 있는 기술 개 발이 필요함.
사업화 가능성	○ 충분한 생산량, 가격 경쟁력, 환경적 당위성을 갖춘다면 사업화 가능성 있음.

❸ 미래모빌리티

대·중견기업 수요 기술(제품) 설명서	
기업명	롯데케미칼
분야	미래모빌리티
기술(제품)명	리튬박 양산기술
필요성 및 기술(제품) 내용	 ○ EV의 급속한 보급 및 확대정책으로 리튬이차전지의 수요는 급속히 증가 중인 상황이나, 현 기술의 한계 존재 ○ 대표적으로 주행거리가 기존 내연기관 대비 낮으며, 특히 여름, 겨울철 에어컨과 히터 등의 가동시 주행거리는 기존 내연기관 차량의 50 ~ 60% 수준에 불과한 상황 ○ 각 자동차사와 전지사들은 이러한 주행거리 한계를 극복하기 위하여 기존 이차전지 소재의 개발을 통하여 에너지밀도를 높이는 것이 향후 EV의 원활한 공급을 위하여 반드시 필요함 ○ 양극재는 하이니켈계를 활용하여 전지의 용량을 높이려고 하고 있으며, 이는 거의 한계에 다다른 상황으로 현재는 음극재의 용량을 높이고자 하는 연구가 본격적으로 시행중임 ○ 대표적인 음극재 기술로는 기존 흑연기반 음극재에 실리콘을 일부 혼용하는 방식과 리튬메탈을 음극재로 활용하는 방식이 있음 ○ 리튬메탈은 현재 일부 기술적 한계(덴드라이트 이슈)가 존재하나, 높은에너지밀도로 인하여 향후 차세대 이차전지에 적용가능성이 매우 높음
기술(제품) 동향 및 수준	 ○ (미) Solid Energy System 은 리튬메탈 표면처리 및 고분자/보강 섬유 코팅을 통하여 리튬메탈 이차전지를 개발하고 있으며, 상하이에 GWh급 공장을 신설 중임 ○ (프) Blue Solution 은 캐나다의 HydroQuebec사의 기술을 활용하여 리튬메탈 및 고분자계 전고체전해질을 기반으로 한 EV를 제작 시험평가 중임 ○ (미) PolyPlus 는 음극재 보호를 위하여 초박막 전도성 라미네이션 기술을 음극재 표면에 적용하여 리튬메탈이 갖고 있는 덴드라이트 이슈를 해결하고자 함
사업화 가능성	● EV의 폭발적 확대에 각 소재의 시장확장성은 매우 높은 상황이 며 이에 따른 음극재 소재의 확대도 예상됨 ○ 현, 기술수준의 한계에 따라 신규 음극소재의 개발이 필요하며 리튬메탈은 전지의 에너지용량을 획기적으로 높이는 주요 소재로 향후 이차전지 시장에 반드시 필요한 핵심기술임 ○ 리튬메탈의 박막화 기술 및 덴드라이트 기술이 향후 이차전지용 음극재 적용을 위하여 반드시 필요한 기술임

① 미래화학신소재

대·중견기업 수요 기술(제품) 설명서	
기업명	SK가스
분야	미래화학신소재
기술(제품)명	폐플라스틱 재생
필요성 및 기술(제품) 내용	○ 최근 플라스틱 과잉 생산으로 인한 플라스틱 폐기물의 피해가 심각 해짐에 따라 플라스틱 재활용 시장에 대한 필요성이 커지고 있음
기술(제품) 동향 및 수준	 2015년 누적 생산 플라스틱은 총 85 억톤이고 그 중 폐기물은 58 억톤임. 폐기물 중 재활용 플라스틱은 5 억톤에 불과함. 20년에 버려진 플라스틱에 한하여 재활용 비율이 23%로 급속도로 증가하는 추세임. 선진국 중심으로 플라스틱 순환경제 도입을 위한 제도가 마련되고 있고, 중국 역시 18년도부터 폐플라스틱 수입 금지 조치를 단행하면서 플라스틱 재활용이 가속화되고 있는 실정임. 대부분의 플라스틱은 기계적 재활용이 대세이나, 화학적 구조 변화 없이 활용하므로 품질이 낮아 활용도가 낮음.
사업화 가능성	○ SK가스는 SK케미칼과 폐플라스틱의 화학적 재활용을 모색하고 있으며, 시장성이 크고 환경적 당위성이 있고 화석연료를 이용해 최초로 생산한 플라스틱과 유사한 수준의 플라스틱 재생 기술이 확보된다면 사업화에 무리가 없을 것으로 보임